
48 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

FOCUS: GREEN SOFTWARE

Analyzing the
Harmful Effect
of God Class
Refactoring
on Power
Consumption
Ricardo Pérez-Castillo and Mario Piattini,
University of Castilla–La Mancha

// Although research indicates that the refactoring

field is now sufficiently mature to improve system

maintainability, most refactoring techniques

decrease sustainability. In particular, the excessive

message traffic derived from refactoring god classes

increases a system’s power consumption. //

THE CONCEPT OF sustainabil-
ity is the culmination of a trend
that combines environmental, so-
cial, and business interests. Energy
efficiency and other sustainabil-
ity efforts are the norm in creating

material products such as cars, light
bulbs, and computer hardware, but
“going green” isn’t very common in
software design and development.1
Indeed, the ever-increasing usage
of software products has boosted

energy demand, with a 2011 study
reporting that the approximate en-
ergy consumption of world data-
centers jumped from 51 billion kWh
in 2005 to 130 billion kWh in 2010.
US and world datacenter electricity
use grew by about 36 percent and
56 percent, respectively, from 2005
to 2010,2 totaling about 1.3 percent
of world electricity use and 2 percent
of US electricity use in 2010.3 Get-
ting stakeholders to recognize envi-
ronmental impacts requires building
sustainability concerns into devel-
opment processes—that is, having
software architects, designers, and
developers optimize their software
products for sustainability during
development.4

Sustainability science is described
as a metadiscipline that transcends
and subsumes knowledge from many
other fields,5 and part of its goal is
to measure impact. The direct and
indirect negative impacts from green
and sustainability software’s devel-
opment, deployment, and usage are
minimal or have a positive effect on
sustainable development.6 Therefore,
the activity of defining and develop-
ing software products in such a way
that the negative and positive im-
pacts on sustainable development are
continuously assessed, documented,
and used helps further optimize the
software product.7

Traditional software development
cycles and methodologies empha-
size software quality features such
as maintainability, but to date, they
haven’t focused on sustainability or
software’s greener aspects.1 A com-
mon practice used to improve a sys-
tem’s maintainability, for example, is
to detect bad smells or anti- patterns
in its architecture.8 Anti-patterns
document recurring solutions to
common design or architectural

s3per.indd 48 4/4/14 2:08 PM

MAY/JUNE 2014 | IEEE SOFTWARE 49

problems; they illustrate what not to
do and how to fi x a problem when
you fi nd it.9 Any occurrences of
anti-patterns are refactored to over-
come their negative consequences;
thus, the refactoring is a correctness-
preserving transformation that im-
proves the quality of the software
without altering semantics.10

Most anti-pattern detection and
refactoring techniques deal with
improvements to the architecture in
terms of maintainability. However,
maintainability improvement can
degrade sustainability. To assess
this phenomenon, we performed a
case study to detect god classes (a
particular anti-pattern) as well as
their refactoring opportunities. The
extra power consumption we found
came from the increase in message
traffi c derived from the architec-
ture modifi cation.

Sustainability vs.
Maintainability
Most software improvement tech-
niques focus on changing informa-
tion system architecture to improve
performance or maintainability. Our
primary research question is whether
the application of traditional archi-
tecture improvement techniques (in
this case, design refactoring for anti-
pattern detection) transform system
architectures into systems that con-
sume more power.

The advantage of applying refac-
toring transformations is fully justi-
fi ed from the maintainability view-
point. After applying the refactoring
operators, we get a modular archi-
tecture with fi ne-grained elements
that have higher cohesion and lower
coupling. But despite these bene-
fi ts, the refactoring transformations
might create harmful side effects in
terms of sustainability. We found

that when certain refactoring opera-
tors are applied in object-oriented
systems (such as “extract new class”
or “extract new method”), they can
lead to higher power consumption
via excessive message traffi c between
objects.

Motivating Example
Imagine a system design with sev-
eral god classes—the god class anti-
pattern refers to classes that perform
most of the heavy work in a system;
other classes have minor roles. God
classes can easily be recognized as
single, complex controller classes
(often with names containing “con-
troller” or “manager”) surrounded
by simple data container classes.
God classes only have accessory op-
erations (such as get() and set()) and
perform little or no computation of
their own.9

More specifi cally, let’s consider
a payment system in which we have
to make payments and refunds. Fig-
ure 1a shows a fragment of the class
diagram for a possible system archi-
tecture. The CreditCard class can
be considered a god class because
it contains almost the whole intel-
ligence. It retrieves each operation
and checks the status (accepted or
rejected) and, depending on status,
performs the payment or refund.

This architecture design is not very
cohesive and highly coupled with
data classes.

Figure 1b, on the other hand,
provides a simple refactored solu-
tion in which a class for operation
intelligence has been extracted. The
Operation class simply reports its
status (accepted or rejected) and
responds to pay() and refund() invoca-
tions. CreditCard does all the work:
it requests information from the
Operation class, makes decisions,
and tells the Operation class what
to do. In this scenario, the architec-
ture coupling has been reduced—
it’s more maintainable—but this
new design will probably require
extra messages if it is to perform an
operation of the subordinate class.
Hence, the message traffi c between
objects increases by a factor of two
or more. Consequently, additional
messages over several executions
could lead to higher power con-
sumption owing to the additional
processor and memory resources
needed to process these messages
over time.

Research Hypothesis and Goal
As already mentioned, our hypoth-
esis is that power consumption de-
creases as a result of reducing ob-
ject message traffi c. Our goal is to

–operations –status

+creditpayment()
+refund()
+getStatus()
++getOperation()

CreditCard

(a)

+creditPayment()
+refund()

CreditCard

+getStatus()
+pay
+refund()

Operation

(b)

FIGURE 1. An example payment system. Comparing (a) the original god class with (b)

the simple refactored solution highlights bene� ts and possible downsides.

s3per.indd 49 4/4/14 2:08 PM

50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GREEN SOFTWARE

demonstrate that when common
refactoring patterns are applied un-
der the detection of well-known
anti-patterns, they lead to excessive
object message traffic, thereby spik-
ing power consumption. Our study’s
aim, which is primarily focused on
god class anti-patterns, is to serve as
the starting point with which to later
provide refactoring transformations
that take into account maintainabil-
ity challenges (such as low coupling
and high cohesion) and sustain-
ability concerns (such as decreased
power consumption).

Research Method
To assess our hypothesis, we con-
ducted a case study with two open
source systems (http://alarcos.esi.uclm.
es/per/rpdelcastillo/Experiments.
html#architectureSustainability).

We chose Informa and
NekoHTML from the Qualitas Cor-
pus (http://qualitascorpus.com), a
collection of software systems in-
tended to be used for empirical stud-
ies of code artifacts. Informa (http://
informa.sourceforge.net) provides
an RSS (Rich Site Summary) library
based on the Java platform and gives
users a harmonized view of a news
channel object model (such as RSS
0.9x, RSS 1.0/RDF, RSS 2.0, Atom
0.3, and Atom 1.0). NekoHTML
(http://nekohtml.sourceforge.net) is
a simple HTML scanner and tag bal-
ancer that lets application program-
mers parse HTML documents and
access the information using stan-
dard XML interfaces.

We analyzed our systems under
study to detect occurrences of the
god class anti-pattern throughout
their architectures. Specifically, we
used JDeoderant (http://jdeodorant.
com), an automatic Eclipse plug-in
that employs a variety of methods
and techniques11 to identify code
smells and suggest the appropriate
refactoring operators with which to
resolve them. After detecting god
classes, we applied all the extracted
class refactoring operators suggested
by JDeodorant to obtain a refactored
version of both systems, which we

call InformaR and NekoHTMLR in
our study.

After obtaining the refactored
versions of the systems, we measured
their object message traffic by using
the same execution scenario to pro-
vide the same conditions. We consid-
ered a representative execution sce-
nario by using the built-in test cases
of both systems, but the execution
based on test cases provided an ap-
propriate execution scenario because
it covers almost the entire functional-
ity. To quantify the object operation
invocations, we traced and profiled
the source code of both systems and
both versions by using the Eclipse
Test and Performance Tools Platform
(TPTP; www.eclipse.org/tptp).

In addition to measuring the
message traffic, we measured the
power consumption of both sys-
tems, as well as that of their origi-
nal and refactored versions. The
execution scenario was once more

conformed through the test cases
provided by each system’s develop-
ers. Again, we executed all the sys-
tems without instrumentation to
avoid the bias derived from the time
spent registering the message traffic
log. We performed this new execu-
tion by using a computer with a core
2 duo processor of 2.66 GHz and 4
Gbytes RAM. During execution, we
measured the power consumption
with an energy logger (Volcraft En-
ergy Logger 4000), which spanned
the energy plug and computer and
recorded each second’s energy con-
sumption in watts (W). We also
measured processor usage in parallel
with power consumption.

Finally, after collecting all this
data, we analyzed and interpreted
the results.

Experimental Results
In total, we detected 21 of 116 classes
as god classes in Informa and 10 of
60 in NekoHTML, or 18 percent
and 17 percent of the total number
of classes, respectively (see Table 1).
Of this amount of god classes, we de-
tected 49 and 26 extractable classes,
respectively. After detecting the god
classes, we performed all the sug-
gested refactoring transformations
(extract classes) to get 11 and 14 new
classes in both systems. The number
of new extracted classes was lower
than the number of god classes be-
cause most of the suggested extract-
able classes overlapped the various
god classes.

Table 1 provides most of the rel-
evant architectural/design metrics
of the original and refactored sys-
tem under study, in addition to the
difference between both versions.
It also shows that InformaR has 11
new classes, which entail 9.48 per-
cent more than the original system,
while NekoHTMLR contains 23.33

Common refactoring patterns applied under
the detection of well-known anti-patterns
lead to excessive object message traffic.

s3per.indd 50 4/4/14 2:08 PM

 MAY/JUNE 2014 | IEEE SOFTWARE 51

percent more classes. These new
classes are related to the respective
increase of 152 and 241 LOC, which
represent an increase of 1.56 percent
and 3.04 percent. As a result of ex-
tracting fine-grained classes from the
god classes during refactoring, the

afferent and efferent coupling (CA
and CE) are worse (around 5 per-
cent in the case of InformaR and be-
tween 2.7 percent and 30.7 percent
for the afferent and efferent coupling
of NekoHTMLR). However, as ex-
pected, the complexity was reduced

by 1.18 percent and 6.24 percent for
each system, respectively.

After refactoring the original
system, the architectures of both
systems would appear to be more
maintainable according to the afore-
mentioned measures and owing to

TA
B

L
E

 1 Architectural metrics, message traffic, and power consumption during execution.

Measure Informa InformaR Difference (%) NekoHTML NekoHTMLR Difference (%)

Ar
ch

ite
ct

ur
e

Lines of code 9,739 9,891 1.56 7,938 8,179 3.04

Classes 116 127 9.48 60 74 23.33

Methods 996 1,024 2.81 473 523 10.57

Afferent
coupling

10 10.5 5.00 5.29 5.43 2.71

Efferent
coupling

7.21 7.57 4.95 5.57 7.29 30.78

Cycle
complexity

1.87 1.84 –1.18 3.44 3.23 –6.24

Re
fa

ct
or

ed

God classes 21 0 10 0

Ratio of god
classes (%)

18.1 0 17 0

Extracted
classes

49 0 26 0

Ex
ec

ut
io

n

Test cases 337 337 0.00 4,201 4,201 0.00

Errors 71 71 0.00 0 0 0.00

Failures 18 19 5.56 1,800 2,200 22.22

Messages 6,221 97,846 1,473 1,550,848 7,900,600 409

Time (s) 57 60 5.26 22 27 22.73

Po
w

er

Total watts 2,052.6 2,207.7 7.56 743.9 893.4 20.10

Watts/s 36.7 37.4 1.91 33.8 34.4 1.62

s3per.indd 51 4/4/14 2:08 PM

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GREEN SOFTWARE

the fact that we dealt with all the
occurrences of god classes. Next,
we had to measure message traf-
fi c. We executed instrumented ver-
sions of both systems throughout the
test suite incorporated in Informa
and NekoHTML source code, and
then we analyzed the two invoca-
tion logs recorded during that exe-
cution and quantifi ed the messages.
In total, 6,221 messages were inter-
changed during Informa’s execution,
and 97,846 messages were produced
in the refactored version. This dra-
matic increase was 14 times greater
because of the extra calls between
the additional fi ne-grained classes
extracted during refactoring. For
NekoHTML, the increase was 4

times greater: message traffi c varied
between 1,550,848 and 7,900,600.
The difference between both systems
lies in the fact that god class refac-
toring might lead to new inheritance
or composition relations, each of
which could lead to different mes-
sage traffi c. Inheritance and delega-
tion is probably one of the factors
for different message traffi c values in
the legacy systems we analyzed.

After demonstrating that the
refactored architecture produces
between 4 and 14 times more mes-
sages for both systems under study,
the last step was to evaluate the
power consumption and link mes-
sage traffi c with power consumption.
Figure 2a presents the active power

consumption evolution (in watts)
during the execution of both sys-
tems and both versions. The peaks
in the plot come from temporal in-
creases in processor usage: certain
test cases require additional compu-
tational resources.

Informa’s power consumption
was on average 36.7 watts, while
 InformaR’s was on average 37.4
watts. The difference in power con-
sumption was on average 1.91 per-
cent. For NeckoHTML, the origi-
nal system consumed 33.8 watts
per second, and for NeckoHTMLR,
34.4 on average. This signifi es an
increase of 1.62 percent. Because
execution time was higher for the
refactored systems, the increases in
power consumption (in terms of ab-
solute values) were 7.6 percent and
20.1 percent, respectively. The dif-
ferent increases are probably due to
each system’s execution scenarios
(which are based on test cases and
could affect other areas controlled
by inheritance and delegations
caused by refactoring).

Figure 2b shows the accumulated
percentage of processor usage dur-
ing the execution of both systems.
The lines follow a similar trend, but
there’s a processor usage spike be-
tween the lines. The increase in pro-
cessor usage proved to be in line with
the increase in power consumption
during the execution of InformaR
and NekoHTMLR.

Ultimately, while the message
traffi c was 14 times higher for
 InformaR, the power consump-
tion only increased by around 8
percent, whereas although the mes-
sage traffi c was 4 times higher for
 NekoHTMLR, the power consump-
tion increased by 20 percent. A bet-
ter architecture in terms of main-
tainability can certainly be worse in
terms of power consumption.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55

50

45

40

35

30

25

Execution time (s)

Ac
tiv

e
po

w
er

 (w
)

(a)

(b)

Informa
InformaR

InformaR
NekoHTMLR

800

600

400

200

0
1 6 11 16 21 26 31 32 41 46 51 56

Execution time (s)

Pr
oc

es
so

r u
sa

ge
 (%

 a
cc

um
ul

at
ed

) Informa
InformaR

InformaR
NekoHTMLR

FIGURE 2. A comparison. (a) Power consumption and (b) accumulated processor

usage during execution indicate more power consumed with more messages.

s3per.indd 52 4/4/14 2:08 PM

 MAY/JUNE 2014 | IEEE SOFTWARE 53

Study Limitations
The study of maintainability and sus-
tainability is a huge endeavor because
it aims to compare an internal (main-
tainability) and an external (power
consumption) software quality. By
addressing the former, refactoring
does decrease software complexity,
which is a desirable software archi-
tecture quality, potentially at design
time; power consumption, mean-
while, is a quality at runtime. Hence,
the trade-offs between the two quali-
ties must be carefully analyzed.

Although our experimental re-
sults have shown that an architec-
ture in which god classes have been
refactored can worsen in terms of
power consumption, the study has
some limitations that should be men-
tioned. The first concerns the system
under study. Despite the fact that In-
forma and NekoHTML are real-life
open source systems, which helps
ensure our study’s repeatability, the
study should also include additional
information systems. In fact, higher
and more complex systems should be
analyzed under the same conditions
to provide stronger results.

The second limitation was the
measurement of power consump-
tion using the energy logger, which
recorded the computer’s total power
consumption—so power consump-
tion wasn’t just execution of Informa
or NekoHTML, but of the operat-
ing system and other computer ap-
plications. Generally speaking, en-
vironmental/green performance is a
pervasive quality that’s difficult to
measure because it’s affected by ev-
ery aspect of the design and execu-
tion environment. To mitigate this,
we executed the computer in safe
mode, with just the essential ser-
vices and no additional applications
executed in parallel. Other studies
have, however, researched energy

usage attribution—for example, the
Software Energy Footprint Lab.11
Moreover, hardware architecture
plays an important role because
power consumption could be re-
lated to the software’s suitability to
run on a specific piece of hardware.
Consequently, a green system will

most likely require the co-design of
hardware and software, or at least a
choice of hardware that’s suitable for
the software architecture chosen.

Another important threat to
our study’s validity is our usage of
JDeodorant to detect anti-patterns
without questioning the results pro-
vided by this tool or evaluating its
false positives. Alternative tools
with which to detect bad smells and
anti-patterns could be used to ob-
tain comparative results. However,
 JDeodorant is an open source tool
that offers support and has been
used in industrial refactoring proj-
ects, plus it also applies the well-
proven Eclipse refactoring operators
rather than implementing its own.

Similarly, the power consump-
tion influence regarding many other
patterns and anti-patterns together
with additional refactoring opera-
tors should be analyzed. For ex-
ample, Feature Envy is devoted to
changing classes that excessively use
methods from other classes. In this
case, called methods are encapsu-
lated in the envy class, but the mes-
sage traffic is almost the same. How-
ever, the refactoring of long methods
can sometimes lead to an increase

in message traffic because it’s refac-
tored to shorter methods, and the
power consumption might therefore
be higher.

The last limitation is related to
the execution scenario we selected,
which was based on the test suite in-
corporated by the system developers

themselves. We did this because of
the impossibility of defining repre-
sentative execution scenarios based
on the whole functionality of the sys-
tem under study. However, in future
replications, the opinion of experts
could be taken into account to define
accurate and complete execution sce-
narios of the systems under study.

D espite the aforementioned
limitations and necessary
future work, the main im-

plication of our preliminary study
is that alternative refactoring tech-
niques should be proposed to simul-
taneously achieve both maintainable
and sustainable architectures. In fact,
the conciliation between maintain-
ability and sustainability might be
extremely difficult, as we’ve shown in
our motivating example, but we be-
lieve that our study is a good starting
point for future research into alterna-
tive refactoring transformations.

Architects typically work on
maintainability for specific business
drivers or stakeholders, so some bar-
riers with which to change their busi-
ness strategy and address (slightly)
higher power consumption could

Green performance is difficult to measure
because it’s affected by every aspect of the

design and execution environment.

s3per.indd 53 4/4/14 2:08 PM

54 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GREEN SOFTWARE

exist. Questions about the costs that
an average CIO can save when using
a sound sustainability strategy on a
corporate IT landscape should there-
fore be answered. A more business-
focused study could be carried out to
build a clear organizational case for
a proper sustainability strategy.

Acknowledgments
This work was supported by the R&D
project GEODAS-BC (TIN2012-37493-

C03-01) funded by Ministerio de
Economía y Competitividad and FEDER.

References
 1. S. Agarwal, A. Nath, and D. Chaudhury,

“Sustainable Approaches and Good Prac-
tices in Green Software Engineering,” Int’l
J. Research and Reviews in Computer Sci-
ence, vol. 3, no. 1, 2012, pp. 1425–1428.

 2. G. Scanniello et al., “Using the GPU to
Green an Intensive and Massive Computa-
tion System,” Proc. 17th European Conf.
Software Maintenance and Reengineering
(CSMR 13), 2013, pp. 384–387.

RICARDO PÉREZ-CASTILLO is an assistant professor at the
University of Castilla–La Mancha and belongs to the Alarcos
Research Group at UCLM. His research interests include
architecture-driven modernization, model-driven development,
and business process archeology. Pérez-Castillo has a PhD in
computer science from the University of Castilla–La Mancha.
Contact him at ricardo.pdelcastillo@gmail.com.

MARIO PIATTINI is a full professor at the University of Cas-
tilla–La Mancha. His research interests include software quality,
metrics, and maintenance. Piattini has a PhD in computer
science from the Technical University of Madrid and leads the
Alarcos Research Group at UCLM. Contact him at mario.
piattini@uclm.es.A

B
O

U
T
 T

H
E

 A
U

T
H

O
R

S

 3. J. Koomey, “Growth in Data Center
Electricity Use 2005 to 2010,” Analytics
Press, 2012; www.analyticspress.com/
datacenters.html.

 4. S. Naumann et al., “The GREENSOFT
Model: A Reference Model for Green and
Sustainable Software and Its Engineering,”
Sustainable Computing: Informatics and
Systems, vol. 1, no. 4, 2011, pp. 294–304.

 5. J.R. Mihelcic et al., “Sustainability Science
and Engineering: The Emergence of a New
Metadiscipline,” Environmental Science
and Technology, vol. 37, no. 23, 2003, pp.
5314–5324.

 6. M. Dick, S. Naumann, and N. Kuhn, “A
Model and Selected Instances of Green
and Sustainable Software,” What Kind
of Information Society? Governance,
Virtuality, Surveillance, Sustainability,
Resilience, J. Berleur, M. Hercheui, and L.
Hilty, eds., Springer, 2010, pp. 248–259.

 7. M. Dick and S. Naumann, “Enhancing
Software Engineering Processes towards
Sustainable Software Product Design,”
Proc. 24th Int’l Conf. Informatics for En-
vironmental Protection (EnviroInfo 2010),
2010, pp. 706–715.

 8. W.H. Brown, R.C. Malveau, and T.J.
Mowbray, AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis,
John Wiley & Sons, 1998.

 9. C.U. Smith and L.G. Williams, “Software
Performance Antipatterns,” Proc. 2nd Int’l
Workshop Software and Performance,
2000, pp. 127–136.

 10. T. Mens and T. Tourwé, “A Survey of Soft-
ware Refactoring,” IEEE Trans. Software
Eng., vol. 30, no. 2, 2004, pp. 126–139.

 11. M. Lanza and R. Marinescu, Object-
Oriented Metrics in Practice, Springer, 2005.

 12. M.A. Ferreira et al., “SEFLab: A Lab for
Measuring Software Energy Footprints,”
Proc. 2nd Int’l Workshop Green and
Sustainable Software, 2013, pp. 30–37.

Advertising Personnel

Marian Anderson: Sr. Advertising Coordinator;
Email: manderson@computer.org; Ph: +1 714 816 2139 | Fax: +1 714 821 4010

Sandy Brown: Sr. Business Development Mgr.
Email sbrown@computer.org; Ph: +1 714 816 2144 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Far East: Eric Kincaid
Email: e.kincaid@computer.org; Phone: +1 214 673 3742; Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East: Ann & David Schissler

Email: a.schissler@computer.org, d.schissler@computer.org
Ph: +1 508 394 4026; Fax: +1 508 394 1707

Southwest, California: Mike Hughes
Email: mikehughes@computer.org; Ph: +1 805 529 6790

Southeast: Heather Buonadies
Email: h.buonadies@computer.org; Ph: +1 973 585 7070; Fax: +1 973 585 7071

Advertising Sales Representatives (Classifi ed Line, Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org Ph: +1 973 304 4123; Fax: +1 973 585 7071

 ADVERTISER INFORMATION • MAY/JUNE 2014

s3per.indd 54 4/4/14 2:08 PM

